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Person Reidentification by Minimum Classification
Error-Based KISS Metric Learning
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Abstract—In recent years, person reidentification has received
growing attention with the increasing popularity of intelligent
video surveillance. This is because person reidentification is crit-
ical for human tracking with multiple cameras. Recently, keep
it simple and straightforward (KISS) metric learning has been
regarded as a top level algorithm for person reidentification. The
covariance matrices of KISS are estimated by maximum likeli-
hood (ML) estimation. It is known that discriminative learning
based on the minimum classification error (MCE) is more reliable
than classical ML estimation with the increasing of the number of
training samples. When considering a small sample size problem,
direct MCE KISS does not work well, because of the esti-
mate error of small eigenvalues. Therefore, we further introduce
the smoothing technique to improve the estimates of the small
eigenvalues of a covariance matrix. Our new scheme is termed
the minimum classification error-KISS (MCE-KISS). We con-
duct thorough validation experiments on the VIPeR and ETHZ
datasets, which demonstrate the robustness and effectiveness of
MCE-KISS for person reidentification.

Index Terms—Intelligent video surveillance, metric learning,
minimum classification error, person reidentification.

I. INTRODUCTION

PERSON reidentification is complex but receives inten-
sive attention in the field of intelligent video surveillance

(IVS). An aim of person reidentification is to match an
instance of a person captured by one camera to another
instance of the person captured by different cameras.
Traditional biometrics, such as face [1], [2], iris [3], fin-
gerprint [4], and gait [5], are not often available, because
images are low-quality, variable, and contain motion blur.
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However, the use of body appearance is reliable for many
person reidentification applications [6]–[8].

As in other visual retrieval applications, such as mobile
visual search [9], [10], and face validation [11]–[13], there are
two important stages which need to be considered in the pro-
cess of person reidentification. They are distance learning [12],
[14], and visual feature extraction and selection.

Many exciting studies on visual feature extraction and
robust representation have been performed which have greatly
improved the performance of person reidentification. Here, we
briefly review representative works.

Person reidentification is a real-time task. The use of color
features (such as RGB, HSV, and YCbCr color histograms),
effectively save computational cost. In addition, color features
are robust to variability in resolution and perspective [7], [15].
Gabor [16], [17], and Schmid filters [18] are insensitive to
light conditions, and have been added to feature extraction
procedures [7], [15], [19]. Local image descriptors are widely
used to represent interest points or regions within the images.
Scale invariant feature transform (SIFT) [20] and speeded up
robust features (SURF) have also been used to extract texture
features [21], [22]. Haar-like features [23], which are impor-
tant features in face detection, have been introduced in person
reidentification [6]. Finally, local binary patterns (LBP) [24],
which were originally proposed for texture classification, have
also been exploited for person reidentification [12]. LBP esti-
mates the local geometric structure of an image based on a
nonparametric method, and has been widely used in facial
image description. A comprehensive comparison of different
local image descriptors are given in [25].

Directly choosing the bounding boxes obtained in detection
approaches used in person reidentification [6] is not the only
method used for feature extraction. Some schemes use stripes
which span the whole horizontal dimension [15], [26], while
Kostinger et al. [12] partitioned the image into a regular grid.
From the grid, the color and texture features are extracted
from overlapping blocks. In addition, segmentation techniques
can be used to obtain a mask that separates the region of
the person from the background region [6], [27]. By utilizing
spatial and temporal cues, Gheissari et al. [28] developed an
over-segmentation method to achieve robust performance.

Recent research on image recognition has demonstrated
that learning meaningful representations (features) from high-
dimensional observations will help to improve the performance
of person reidentification. Bak et al. [29] utilized spatial
pyramid matching (SPM) [30] to represent the instance of a
person. The classical SPM scheme, in which the classifier is
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constructed by Mercer kernels, provides an effective solution,
but it is computationally expensive. Locality-constrained linear
coding (LLC) [31] is more suitable than SPM, because LLC
is based on local coordinate coding (LCC), and explores the
locally linear characteristics of the sample distribution. The
effectiveness of LLC is ensured by several attractive prop-
erties, namely reconstruction, local smooth sparsity, and an
analytical solution.

As well as obtaining robust features for image represen-
tation, dimension reduction is necessary to retain the most
effective features for subsequent matching. This is because a
combination of the aforementioned selected features is usually
deployed, and dimension reduction results in a succinct, yet
effective representation of a high-dimensional sample. Over
the past decade, classical linear dimension reduction algo-
rithms, and the emerging manifold learning algorithms, have
enriched our choices for feature selection.

Dimension reduction algorithms have received increasing
attentions in recent years. Principal component analysis
(PCA) [32] is a representative classical linear algorithm.
Laplacian eigenmaps (LE) [33], which are a classical
geometrically-motivated algorithm, pay much attention to the
nonlinearity of the data distribution. Locally linear embedding
(LLE) [34] seeks a low-dimensional, neighborhood-preserving
embedding of the high-dimensional data. ISOMap [35] is
a variant of multidimensional scaling which considers the
geodesic distance between samples. Linear discriminant anal-
ysis (LDA) [36], [37] aims to separate samples drawn from
different classes. Supervised locality preserving projections
(SLPP) [38] and discriminative locality alignment (DLA) [39]
consider the local geometry of a set of high-dimensional sam-
ples. Zhang et al. [40] proposed a framework to unify repre-
sentative dimension reduction algorithms to better understand
their intrinsic differences.

Distance learning can significantly improve the performance
of retrieval applications [41], [42]. In this paper, we aim
to update the retrieval precision by applying robust distance
learning. In earlier studies, several approaches which have
achieved top-level performance in image retrieval applications
perform poorly for person reidentification. It is worth spe-
cial mention that KISS metric learning is both efficient and
effective [12]. However, it is assumed that pairwise differences
are sampled from a Gaussian distribution, has the small sam-
ple size problem for estimating the covariance, and therefore
results in retrieval precision not always performing robustly in
practice.

In this paper, we introduce the minimum classification error
(MCE) criterion [43] to improve KISS distance learning for
person reidentification. In particular, eigenvalues of the true
covariance matrix are biased, which harms the utilization of
the estimated covariance matrix in subsequent operations, such
as classification. The covariance matrices of KISS are obtained
by maximum likelihood (ML) estimation. With increasing
the number of training samples, discriminative learning based
on MCE is more reliable than classical ML estimation. In
addition, the MCE criterion is widely used in the field of
machine learning. Many researchers have suggested that auto-
matic speech recognition systems can demonstrate improved

performance under the MCE criterion [44]–[46]. Reed and
Lee [47] proposed an MCE training algorithm to build a
music recommendation tool. However, only introducing the
MCE criterion to the training procedure does not work well
to estimate the small eigenvalues of the covariance matri-
ces. Therefore, the smoothing technique [48] is required to
improve the estimate of the small eigenvalues of a covari-
ance matrix. The improved KISS is termed the minimum
classification error-KISS, or simply MCE-KISS.

The procedure for MCE-KISS-based person reidentification
can be summarized by the following steps: 1) partitioning
the image into a regular grid of size 8 × 4 and overlapping
block of size 8×8, and the color features and texture features
are extracted from the overlapping blocks; 2) concatenating all
the feature descriptors together and conducting PCA to achieve
a robust feature representation for each sample; 3) training
MCE-KISS; and 4) finally finding the matching rank accord-
ing to the query target. Given limited space considerations, we
do not describe the other parts in detail, since implementations
can be easily found in the references.

The main contribution of this paper include the following.

1) The newly proposed MCE-KISS by seamlessly inte-
grating MCE criterion and smoothing technique to
significantly improve the performance of KISS metric
learning.

2) We have thoroughly compared MCE-KISS with other
the state-of-the-art schemes of person reidentification
on two public datasets. Experiment results demon-
strate our scheme robust and effectiveness. By con-
trast to RS-KISS [49] that integrates smoothing and
regularization techniques under the frame of KISS
metric learning [12], the newly proposed MCE-KISS
exploits a discriminative learning procedure to effec-
tively adjust the parameters of Gaussian density model,
so MCE-KISS achieves the robust generalization ability
on test set.

The rest of the paper is organized as follows: in Section II,
we briefly review related works for improving distance
learning for person reidentification. We detail the proposed
MCE-KISS in Section III. Section IV shows the experi-
ment results on the representative datasets (VIPeR [7] and
ETHZ [8]). We conclude the paper in Section V.

II. RELATED WORK

In Section I, we briefly reviewed the techniques used in per-
son reidentification. It is worth noting the importance of dis-
tance learning schemes, which have been receiving increasing
attention [14], [50] because the retrieval quality is known to be
highly dependent on distance metrics. Porikli [51] proposed a
new distance learning algorithm to solve the color calibration
problem of a multicamera system. Weinberger and Saul [14]
proposed a large margin nearest neighbor metric (LMNN)
to improve the performance of the classical kNN classifi-
cation. However, the computational processing of k closest
within-class samples is time-consuming. From the perspec-
tive of information theoretic, Davis et al. [50] proposed
information-theoretic metric learning (ITML), which built on
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the Mahalanobis distance metric. Recently, Zheng et al. [52]
proposed a soft discriminative scheme termed relative distance
comparison (RDC). In this scheme, it is assumed that wrong
and right matches correspond to large and small distances,
respectively. In contrast to consider modeling the similarity
globally, Yang et al. [53] proposed local distance metric to
improve the performance of retrieval and classification accu-
racy. However, most methods may perform poorly when the
view conditions change greatly and the training samples are
insufficient.

As well as distance metric learning-based matching
schemes, researchers have exploited other schemes to
improve retrieval precision. By utilizing subspace learning,
Javed et al. [54] proposed a brightness transfer function to
cope with the illumination changes in a multicamera system.
Prosser et al. [19] introduced Rank support vector machines
(RankSVM) to person reidentification and proposed ensemble
RankSVM to handle the scalability issue.

III. MINIMUM CLASSIFICATION ERROR-BASED KISS
METRIC LEARNING

A. KISS Metric Learning Review

Recently, Kostinger et al. [12] proposed KISS metric learn-
ing (KISS) based on an assumption that pairwise differences
are Gaussian distributed. This has acquired state-of-the-art
retrieval performance for real applications, such as person
reidentification and face recognition.

Considering the person reidentification problem, a feature
vector pair xi and xj represents two samples. The hypothesis
H0 can assume that the feature vector pair is dissimilar, i.e., xi

and xj are sampled from different people, and the hypothesis
H1 denotes that the feature vector pair is similar, i.e., xi and
xj are sampled from the same person. Equation (1) defines the
logarithm of the ratio between the two posteriors

δ
(
xi, xj

) = log

(
p
(
xi, xj|H0

)

p
(
xi, xj|H1

)

)

. (1)

For metric learning, a large δ
(
xi, xj

)
indicates xi and xj

represent different people, while a small δ
(
xi, xj

)
indicates xi

and xj represent a same person. We denote the difference of
the feature vector pair by xij = xi − xj, and thus we have

δ
(
xij
) = log

(
p
(
xij|H0

)
/p
(
xij|H1

))
(2)

which can be rewritten as

δ
(
xij
) = log

(
f
(
xij|θ0

)
/f
(
xij|θ1

))
(3)

where f
(
xij|θ

)
is the probability density functions with param-

eter θ for hypothesis H.
After assuming the difference space is a Gaussian structure,

we have

f
(
xij|θk

) = 1

(2π)d/2|�k|1/2
exp

(
−1

2
xT

ij�
−1
k xij

)
(4)

where k ∈ {0, 1}, d is the dimensionality of the feature vector,
and �k is the covariance matrix of xij. Note that for specific i
and j, since both xij and xji belong to the pairwise difference

set, we have
∑

i,j
xij = 0, i.e., zero mean and θ1 = (0, �1) and

θ0 = (0, �0).
Given (4), (3) can be rewritten as

δ
(
xij
) = 1

2
xT

ij

(
�−1

1 − �−1
0

)
xij + 1

2
log

( |�1|
|�0|

)
. (5)

By dropping the constant terms, we have

δ
(
xij
) = xT

ij

(
�−1

1 − �−1
0

)
xij. (6)

Define yij as the indicative variable of xi and xj : yij =
1 if xi and xj are the same person, otherwise yij = 0. Let
N1 denote the number of similar feature vector pairs, while
N0 denotes the number of dissimilar feature vector pairs. The
covariance matrices are estimated as follows:

�0 = 1

N0

∑

yij=0

xijxT
ij = 1

N0

∑

yij=0

(
xi − xj

) (
xi − xj

)T

�1 = 1

N1

∑

yij=1

xijxT
ij = 1

N1

∑

yij=1

(
xi − xj

) (
xi − xj

)T
. (7)

Equation (7) shows that the eigenvalues of �0 and �1 are
positive.

Let KISS project �−1
1 − �−1

0 onto the cone of the positive
a semi-definite matrix M, so we have

δ
(
xij
) = xT

ijMxij (8)

where M is the KISS metric matrix.

B. MCE-KISS Metric Learning

Although KISS has largely improved the accuracy of person
reidentification, there is a lot of room to improve efficiency
and stability. It is critical to estimate the covariance matrices
in (6) accurately to improve performance for person reidenti-
fication. It is known that the model of Gaussian distribution
suffers from estimate error given limited training samples.
Specifically, it is laborious and tedious to get a large number
of labeled samples in real applications, to overcome the esti-
mate error of the small eigenvalues of the covariance matrices
which arose through the problem of small sample size.

In statistics, to obtain robust estimations, a large number of
techniques have been proposed. In this paper, the smoothing
technique [48], and the MCE criterion [43], are introduced
to improve the accuracy of estimates of covariance matrices
in KISS. By enlarging the estimate to the small eigenvalues
of a covariance matrix, the smoothing technique can compen-
sate for the decrease in performance which arose from the
estimate errors of small eigenvalues. On the other hand, the
covariance matrices of KISS are estimated by ML estimation.
It is known that the ML estimation for Gaussian density model
is imprecise, the discriminative learning procedure based on
MCE aims to adjust the parameters of Gaussian density model
and improves the generalization ability by increasing the
number of training samples.

The covariance matrix �i in (6) is first diagonalized and
can be written as

�i = �i�i�
T
i (9)
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where �i = diag [λi1, λi2, . . . , λid] with λij being an eigen-
value of �i, �i = [φi1, φi2, . . . , φid] with φij being an
eigenvector of �i, and eigenvalues in �i are arranged in a
descending order.

We substitute (9) into (6) and obtain

δ
(
xij
) = xT

ij

(
�−1

1 − �−1
0

)
xij

= xT
ij

(
�1�

−1
1 �T

1 − �0�
−1
0 �T

0

)
xij

= [
�T

1 xij
]T

�−1
1

[
�T

1 xij
]− [

�T
0 xij

]T
�−1

0

[
�T

0 xij
]

=
d∑

n=1

1

λ1n

(
φT

1nxij
)2 −

d∑

n=1

1

λ0n

(
φT

0nxij
)2

. (10)

Through (10), we can explain that the small eigenvalues
significantly affect the score of metric.

Next, we replace the small eigenvalues of the covariance
matrix with a small constant βi

�i = diag

⎡

⎢
⎣λi1, λi2, · · · , λik, βi, · · · βi︸ ︷︷ ︸

d−k

⎤

⎥
⎦ (11)

where d is the dimensionality of training samples. Taking into
account the smoothing technique, the constant βi is set to the
value of the average of all the small eigenvalues

βi = 1

d − k

d∑

n=k+1

λin. (12)

Thus, (10) can be written as

δ
(
xij
) =

d∑

n=1

1

λ1n

(
φT

1nxij
)2 −

d∑

n=1

1

λ0n

(
φT

0nxij
)2

=
k∑

n=1

1

λ1n

(
φT

1nxij
)2 +

d∑

n=k+1

1

β1

(
φT

1nxij
)2

−
k∑

n=1

1

λ0n

(
φT

0nxij
)2 −

d∑

n=k+1

1

β0

(
φT

0nxij
)2

(13)

=
k∑

n=1

1

λ1n

(
φT

1nxij
)2 + 1

β1

(
∥∥xij

∥∥2 −
k∑

n=1

(
φT

1nxij
)2

)

−
k∑

j=1

1

λ0n

(
φT

0nxij
)2− 1

β0

(
∥∥xij

∥∥2 −
k∑

n=1

(
φT

0nxij
)2

)

.

According to the MCE criterion, we need to optimize the
parameters of covariance matrices by utilizing the gradient
descent method. Then, we have the evaluation of misclassifi-
cation of a sample x belonging to class c

hc (x) = max
c

δ (x, xc) − min
r

δ (x, xr) (14)

where xc is a sample of the class c, and xr is the closest
interclass sample. Equation (14) considers two aspects: 1) the
distance between x and the farthest intraclass sample and
2) the distance between x and the closest interclass sample.
Furthermore, the loss of the misclassification can be written as

lc (x) = 1

1 + e−ξhc(x)
(15)

where ξ is a trade-off parameter and is selected in the range
of (0,+∞].

Given the training samples {xn |n = 1, 2, . . . , N }, and the
label of each sample {Ci |i = 1, 2, . . . , M }, we can compute
the empirical loss by using (16)

L = 1

N

N∑

n=1

M∑

i=1

li (xn) I (xn ∈ Ci) (16)

I (xn ∈ Ci) =
{

1, if xn ∈ Ci

0, if xn /∈ Ci
. (17)

And (16) can be further deduced to

L = 1

N

N∑

n=1

lc (xn) (18)

where c is the class information. According to (18), we expect
that the distance between x and the farthest intraclass sample
are as small as possible and the distance between x and the
closest interclass sample are as large as possible.

The parameters in KISS include the eigenvectors and eigen-
values of �0 and �1, i.e., λ1n, β1, λ0n, β0, φ1n and φ0n. In
MCE-KISS, we minimize the empirical loss L by means of
adjusting these parameters via gradient descent. Let θ denote
the parameters, according to gradient descent, we can get a
general update rule of parameters

θ (t + 1) = θ (t) − ε (t)
∂L

∂θ

= θ (t) − ε (t)
∂lc (x)

∂θ
(19)

∂lc (x)

∂θ
= (−1) · 1

(
1 + e−ξhc(x)

)2
· (−ξ) e−ξhc(x) ∂hc (x)

∂θ

= ξ l2c (x) ·
(

1

lc (x)
− 1

)
∂hc (x)

∂θ

= ξ lc (x) (1 − lc (x))
∂hc (x)

∂θ
(20)

∂hc (x)

∂θ
= ∂δ (x, xc)

∂θ
− ∂δ (x, xr)

∂θ
. (21)

According (19)–(21), we have

θ (t + 1) = θ (t)

−ε (t) ξ lc (x) (1 − lc (x))

(
∂δ (x, xc)

∂θ
− ∂δ (x, xr)

∂θ

)
. (22)

In the learning process, we need to guarantee eigenvalues
are positive, so we further define

{
λin = eσin

βi = eτi
. (23)

We rewrite (23) to
{

σin = ln λin

τi = ln βi
. (24)

Based on (22), we convert the parameter updating to the
computation of partial derivatives (25)–(28)
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂δ(x,xj)
∂τ1

= −e−τ1

[∥∥x − xj
∥∥2 −∑k

n=1

[
φT

1n

(
x − xj

)]2
]

∂δ(x,xj)
∂τ0

= e−τ0

[∥∥x − xj
∥∥2 −∑k

n=1

[
φT

0n

(
x − xj

)]2
]

(25)
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Algorithm 1 Minimum Classification Error-KISS

Step 1: The initial �−1
0 and �−1

1 are calculated by using (7).
Step 2: Smooth technique: By using (12) to amend for the
estimation errors of small eigenvalues of �−1

0 and �−1
1 ;

Step 3: MCE technique: By using (25), (26), (27), and (28)
to optimize the parameters of �−1

0 and �−1
1 ;

Step 4: The distance metric is calculated by using (6).

⎧
⎨

⎩

∂δ(x,xj)
∂σ1n

= −e−σ1n
[
φT

1n

(
x − xj

)]2

∂δ(x,xj)
∂σ0n

= e−σ0n
[
φT

0n

(
x − xj

)]2 (26)

∂δ(x,xj)
∂φ1nl

= ∂
∂φ1nl

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k∑

n=1
e−σ1n

[
d∑

l=1
φ1nl

(
x − xj

)
l

]2

+e−τ1

[∥
∥x − xj

∥
∥2

−
k∑

n=1

(
d∑

l=1
φ1nl · (x − xj

)
l

)2
⎤

⎦

−
k∑

n=1
e−σ0n

[
d∑

l=1
φ0nl

(
x − xj

)
l

]2

−e−τ0

[∥∥x − xj
∥∥2

−
k∑

n=1

(
d∑

l=1
φ0nl · (x − xj

)
l

)2
⎤

⎦

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= e−σ1n · 2
[
φT

1n

(
x − xj

)] · (x − xj
)

l

+e−τ1 . (−1) .2
[
φT

1n

(
X − Xj

)]
.
(
X − Xj

)
l

= 2
(
e−σ1n − e−τ1

) [
φT

1n

(
X − Xj

)] (
X − Xj

)
l

(27)

∂δ
(
x, xj

)

∂φ0nl
= −2

(
e−σ0n − e−τ0

) [
φT

0n

(
x − xj

)]

(
x − xj

)
l . (28)

We can optimize the parameters of �−1
0 and �−1

1 by
using (25)–(28) and the distance metric δ

(
xij
)

satisfied the
needs of the MCE.

Based on the above discussions, we summarize MCE-KISS
in Algorithm 1.

IV. EXPERIMENT RESULTS

In this section, two widely used yet challenging datasets,
VIPeR [7] and ETHZ [8], were used to demonstrate the
effectiveness of the proposed MCE-KISS method. All images
from the two datasets were normalized to a standard size of
128 × 48. In general, this manipulation causes shape distortion
which has limited effect on human visual systems. For each
image, we concatenated the extracted LBP descriptor [24] and
some color features into a high dimensional feature vector.

In our experiments, all samples of pts subjects were selected
to form the test set, while the rest ptr were used for model
training. During training, we used intraperson image pairs
as similar pairs, and generated interperson image pairs (by
randomly selecting two images from different subjects) as
dissimilar pairs. The image pairs are used to estimate �−1

0

Fig. 1. Some typical samples from the VIPeR dataset. Same-person paired
samples from different camera views can be seen in each column, demonstrat-
ing the observed variations, such as in viewpoint, pose, shooting locations,
illumination, and image quality.

Fig. 2. Some typical samples from the ETHZ dataset. Same-person sam-
ples cropped from the video sequence are shown in each row, demonstrating
that variations in viewpoint, pose, shooting location, illumination, and image
quality, are minor.

and �−1
1 according Algorithm 1. During testing, the test set

were divided into two parts, i.e., a gallery set and a probe set.
We randomly chose one sample of each subject to comprise
the gallery set. The rest were used for the probe set. Person
reidentification aims to identify a person’s photo in the probe
set by comparing it with images of several individuals stored
in the gallery set.

By using the average cumulative match characteristic
(CMC) curves, we evaluated the performance of the proposed
algorithm. Because the complexity of the reidentification prob-
lem, the top n-ranked matching rate was considered (n is a
small value). We detail of the experiment setup and baseline
models as follows.

A. VIPeR Dataset

The VIPeR dataset was collected by Gray et al. [7] and
contains 1264 outdoor images obtained from two views of
632 subjects. Intraperson image pairs may contain a viewpoint
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Fig. 3. Process of feature extraction used in this paper. First, each image was partitioned into a regular grid with 8 pixel spacing in the horizontal direction
and 4 pixel spacing in the vertical direction. Second, from the grid, the LBP descriptor, HSV histogram, and RGB histogram were extracted from overlapping
blocks of size 8 × 8. Third, all the feature descriptors were concatenated together.

Fig. 4. Performance comparison using CMC curves. In each subfigure, the x-coordinate is the rank score and the y-coordinate is the matching rate. We
compare MCE-KISS with L2, MM, ITML, LMNN, KISS, and RS-KISS on the VIPeR dataset. (a) pts = 316. (b) pts = 532.

TABLE I
PERSON REIDENTIFICATION TOP RANKED MATCHING RATE ON THE VIPER DATASET

change of 90◦. Other variations are also considered, such
as lighting conditions, shooting locations, and image qual-
ity. Thus, it is challenge to conduct image-based person
reidentification on the VIPeR dataset. Example images are
shown in Fig. 1.

We set pts = 316 and pts = 532, respectively to evaluate
the matching performance of different algorithms. We repeated

the process 10 times, and the average CMC curves were
depicted.

B. ETHZ Dataset
The ETHZ Dataset was collected by Ess et al. [55], and is

widely used for person detection and tracking. Subsequently,
it has been used for the purpose of person reidentification [8].
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Fig. 5. Performance comparison using CMC curves. In each subfigure, the x-coordinate is the rank score and the y-coordinate is the matching rate. We
compare MCE-KISS with L2, MM, ITML, LMNN, KISS, and RS-KISS on the ETHZ dataset. (a) pts = 70. (b) pts = 120.

TABLE II
PERSON REIDENTIFICATION TOP RANKED MATCHING RATE ON THE ETHZ DATASET

It contains 8555 images collected from 146 individuals. Some
typical example images are given in Fig. 2, which show same-
person samples cropped from the video sequence in each row.
In contrast to VIPeR, ETHZ has more samples collected from
a subject. We can see that variations, such as viewpoint, pose,
shooting location, illumination, and image quality, are minor.

We set pts = 70 and pts = 120, respectively to evaluate
the matching performance of different algorithms. The process
was repeated 10 times, and then average CMC curves were
depicted.

C. Feature Descriptors

It is known that both texture features and color histograms are
useful for person reidentification. In our experiments, each
image was partitioned into a regular grid with 8 pixel spacing
in the horizontal direction, and 4 pixel spacing in the vertical
direction. From the grid, the LBP descriptor, HSV histogram,
and RGB histogram were extracted from overlapping blocks
of size 8 × 8. The HSV and RGB histograms encoded the
different color distribution information in the HSV and RGB
color spaces, respectively. The texture distribution information
was modeled effectively by LBP descriptor. All the feature
descriptors were concatenated together. Fig. 3 shows the pro-
cess of feature extraction. We conducted PCA to obtain a
40-dimensional representation, to suppress the Gaussian noise.

D. Baseline Methods
We compared six representative metric learning approaches

to validate the effectiveness of our algorithm, including
Euclidean distance (L2), Mahalanobis metric (MM),
KISS [12], RS-KISS [49], information theoretical metric
learning (ITML) [50], and metric learning for LMNN [14].
Each of these methods has its own advantages. The L2
distance has been applied to construct a baseline in most
of the existing person reidentification studies. The MM
considers the correlations of variables, and can perform
better than L2 [56]. KISS, ITML, and LMNN are the
state-of-the-art metric learning algorithms that have been
applied to many different applications. RS-KISS is superior
to KISS through combining the smoothing and regularization
techniques.

The impact of the variation of k in (11) has been eval-
uated on the ETHZ dataset. We set pts = 120 and the
number of eigenvalues need to be smoothed d − k = 1, 4, 7,
respectively. Afterward, MCE-KISS was applied to update the
metric. In addition, on the ETHZ dataset, we have thoroughly
compared MCE-KISS with KISS on four different size training
sets. We selected ptr = 10, 20, 30, 40 and applied MCE-KISS
and KISS to update the metric, respectively. In addition, the
training iterations of MCE-KISS are 1000. We conduct all
experiments on an Intel Xeon E5645 2.40GHz computer with
a 144-GB memory.
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TABLE III
PERSON REIDENTIFICATION TOP MATCHING RATES ON THE VIPER

DATASET (pts = 316): COMPARING WITH THE POPULAR ALGORITHMS

TABLE IV
PERSON REIDENTIFICATION TOP MATCHING RATES ON THE VIPER

DATASET (pts = 532): COMPARING WITH THE POPULAR ALGORITHMS

E. Experiment Results and Analysis

Fig. 4 shows the comparison of our proposed MCE-
KISS metric learning with KISS, RS-KISS, L2, MM, ITML,
and LMNN on the VIPeR dataset. In each subfigure, the
x-coordinate is the rank score, and the y-coordinate is the
matching rate. Only the top 150 ranking positions are shown in
the figure. Table I reports the performance of all the algorithms
within the scope of the first 50 ranks.

Fig. 5 compares the proposed MCE-KISS metric learning
with KISS, RS-KISS, L2, MM, ITML, and LMNN on the
ETHZ dataset. In each subfigure, the x-coordinate is the rank
score, and the y-coordinate is the matching rate. Only the top
30 ranking positions are shown in the figure. Table II reports
the performance of all the algorithms in the scope of the first
30 ranks.

In Tables III and IV, we compared MCE-KISS with other
popular person reidentification approaches which have differ-
ent features on the VIPeR dataset. These approaches include
RPML [57], Li and Wang’s [58], RDC [52], PCCAχ2

RBF [59],
and Adaboost [6]. MCE-KISS performs best in terms of rank
score in most cases.

Fig. 6 shows the impact of variation of k in (11). In the
figure, the x-coordinate is the rank score and y-coordinate is
the matching rate. Only the top 10 ranking positions are shown
in the figure.

Fig. 7 compares MCE-KISS with KISS on different size
training sets on the ETHZ dataset. Only the top 30 rank-
ing positions are shown in the figure. Table V reports mean
training time of the experiments.

The main observations from the matching performance
comparisons are given below.

1) MCE-KISS integrates the smoothing technique and the
MCE criterion for precise covariance matrix estimation.

Fig. 6. Performance comparison using the CMC curve. In the figure, the
x-coordinate is the rank score and y-coordinate is the matching rate. Top 10
ranking positions are depicted. This figure suggests the impact of variation of
k in (11) for MCE-KISS.

TABLE V
AVERAGE TRAINING TIME

It thus improves KISS and significantly outperforms L2,
MM, ITML, and LMNN.

2) MCE-KISS is superior to RS-KISS, because the dis-
criminative learning procedure for effectively adjusting
the parameters of Gaussian density model significantly
improves the generalization ability.

3) Fig. 5(a) and (b) shows that LMNN performs poorly,
because the variations that cause differences between
intraperson images in ETHZ are rather small. It also
illustrates that LMNN models relative distance, which
is sensitive to training samples.

4) Fig. 6 suggests the smoothing technique is useful for
precise estimation of the small eigenvalues.

5) Fig. 7 suggests MCE-KISS can improve the accuracy
of the KISS metric and tackle small samples size prob-
lem. Table V shows that the training time of MCE-KISS
is associated with irritations and requires more training
time than that of KISS.

6) Fig. 5(a) and Table II suggest MCE-KISS is more
robust than KISS at the top five ranked matching rate.
This also illustrates that the proposed algorithm is more
reliable.
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Fig. 7. Performance comparison using the CMC curves. In each subfigure, the x-coordinate is the rank score and y-coordinate is the matching rate. We
compare MCE-KISS with KISS on the ETHZ dataset. Top 30 ranking positions are depicted. These subfigures suggest MCE-KISS can improve the accuracy
of the KISS metric and tackle small samples size problem. (a) ptr = 10. (b) ptr = 20. (c) ptr = 30. (d) ptr = 40.

V. CONCLUSION

The distance metric is critically important for effective per-
son reidentification in surveillance tasks. Thus, it is rational to
find a suitable distance metric learning algorithm to boost the
performance of person reidentification. In recent years, many
distance metric learning algorithms have been developed, such
as ITML and metric learning for LMNN. However, these algo-
rithms are not suitable for person reidentification, because
there are only limited training image pairs to learn a met-
ric in person reidentification. Although KISS metric learning
is considered state-of-the-art, it shares a similar problem.

Given a small number of training samples, we observe that
covariance matrices estimated by KISS are biased. Therefore,
we present the MCE-KISS. The proposed MCE-KISS algo-
rithm exploits the smoothing technique to enlarge the small
eigenvalues of the estimated covariance matrix, and discrimi-
native learning based on MCE which is more reliable than clas-
sical ML estimation. The employed two statistical techniques
effectively enlarge the underestimated small eigenvalues and
better estimate the covariance matrix. Therefore, MCE-KISS
significantly improves KISS for person reidentification.

Because the MCE-KISS relies on gradient descent that is an
iterative optimization procedure, the training speed of MCE-
KISS is much slower than KISS. Thus, we will consider
parallelizing MCE-KISS to accelerate the training stage in the
future.
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